Artificial General Intelligence
Artificial general intelligence (AGI) is a type of artificial intelligence (AI) that matches or surpasses human cognitive capabilities throughout a broad variety of cognitive jobs. This contrasts with narrow AI, which is restricted to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly goes beyond human cognitive capabilities. AGI is thought about among the meanings of strong AI.
Creating AGI is a primary objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and advancement projects throughout 37 countries. [4]
The timeline for accomplishing AGI remains a topic of ongoing argument among researchers and professionals. As of 2023, some argue that it might be possible in years or decades; others keep it might take a century or longer; a minority think it might never be accomplished; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed concerns about the rapid development towards AGI, suggesting it could be achieved sooner than lots of anticipate. [7]
There is debate on the precise meaning of AGI and regarding whether modern large language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical topic in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many specialists on AI have specified that alleviating the risk of human termination presented by AGI ought to be a global priority. [14] [15] Others discover the development of AGI to be too remote to present such a threat. [16] [17]
Terminology
AGI is also called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]
Some scholastic sources book the term "strong AI" for computer programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one specific issue but lacks general cognitive abilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as humans. [a]
Related principles consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is much more typically intelligent than human beings, [23] while the concept of transformative AI connects to AI having a large influence on society, for example, comparable to the agricultural or industrial revolution. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For example, a skilled AGI is specified as an AI that exceeds 50% of competent adults in a large variety of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified but with a threshold of 100%. They think about big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. One of the leading propositions is the Turing test. However, there are other popular definitions, wiki-tb-service.com and some scientists disagree with the more popular methods. [b]
Intelligence characteristics
Researchers generally hold that intelligence is required to do all of the following: [27]
reason, use technique, resolve puzzles, and make judgments under unpredictability
represent knowledge, consisting of good sense understanding
plan
discover
- interact in natural language
- if required, incorporate these abilities in conclusion of any provided objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about additional characteristics such as creativity (the ability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that display a number of these capabilities exist (e.g. see computational imagination, automated thinking, choice assistance system, robot, evolutionary computation, intelligent agent). There is dispute about whether modern AI systems possess them to an adequate degree.
Physical characteristics
Other abilities are thought about preferable in intelligent systems, as they might impact intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. relocation and manipulate things, users.atw.hu modification place to check out, and so on).
This consists of the ability to detect and react to hazard. [31]
Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and manipulate things, modification area to explore, and so on) can be preferable for some smart systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that large language models (LLMs) might already be or become AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, offered it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has never been proscribed a particular physical personification and therefore does not demand a capability for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to validate human-level AGI have been thought about, consisting of: [33] [34]
The concept of the test is that the maker has to attempt and pretend to be a male, by answering concerns put to it, and it will only pass if the pretence is reasonably persuading. A significant part of a jury, who must not be professional about makers, should be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would require to execute AGI, due to the fact that the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are many issues that have been conjectured to need general intelligence to fix in addition to humans. Examples consist of computer vision, natural language understanding, and dealing with unanticipated scenarios while solving any real-world problem. [48] Even a specific task like translation needs a maker to read and write in both languages, follow the author's argument (reason), understand the context (understanding), and consistently replicate the author's initial intent (social intelligence). All of these issues require to be fixed at the same time in order to reach human-level device performance.
However, a number of these jobs can now be performed by modern-day big language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of standards for checking out comprehension and setiathome.berkeley.edu visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI scientists were convinced that synthetic basic intelligence was possible and that it would exist in just a few decades. [51] AI pioneer Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could develop by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the job of making HAL 9000 as sensible as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the issue of developing 'artificial intelligence' will substantially be resolved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had grossly underestimated the trouble of the task. Funding firms ended up being skeptical of AGI and put researchers under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "bring on a table talk". [58] In action to this and the success of expert systems, both market and government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in 20 years, AI scientists who forecasted the imminent accomplishment of AGI had actually been mistaken. By the 1990s, AI scientists had a track record for making vain promises. They became reluctant to make predictions at all [d] and prevented reference of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved business success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven results and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the innovation industry, and research study in this vein is greatly funded in both academic community and market. Since 2018 [upgrade], development in this field was thought about an emerging pattern, and a mature phase was expected to be reached in more than ten years. [64]
At the turn of the century, many mainstream AI researchers [65] hoped that strong AI could be developed by combining programs that resolve different sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up route to expert system will one day fulfill the traditional top-down path majority way, all set to supply the real-world proficiency and the commonsense knowledge that has been so frustratingly elusive in thinking programs. Fully smart devices will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is actually just one practical path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer system will never ever be reached by this path (or vice versa) - nor is it clear why we should even attempt to reach such a level, since it appears getting there would simply amount to uprooting our signs from their intrinsic meanings (thereby merely reducing ourselves to the functional equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research study
The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to satisfy goals in a large range of environments". [68] This kind of AGI, identified by the capability to increase a mathematical definition of intelligence instead of exhibit human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of visitor speakers.
As of 2023 [update], a little number of computer researchers are active in AGI research study, and numerous add to a series of AGI conferences. However, progressively more scientists have an interest in open-ended learning, [76] [77] which is the concept of allowing AI to continually discover and innovate like humans do.
Feasibility
Since 2023, the advancement and potential achievement of AGI remains a subject of intense dispute within the AI community. While traditional agreement held that AGI was a remote goal, recent developments have led some researchers and market figures to declare that early types of AGI might currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This prediction failed to come real. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century since it would require "unforeseeable and fundamentally unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern computing and human-level expert system is as wide as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]
A further obstacle is the absence of clearness in specifying what intelligence entails. Does it require awareness? Must it show the capability to set goals in addition to pursue them? Is it purely a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence need explicitly reproducing the brain and its specific professors? Does it need feelings? [81]
Most AI researchers believe strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, however that the present level of progress is such that a date can not properly be predicted. [84] AI professionals' views on the expediency of AGI wax and subside. Four surveys performed in 2012 and 2013 suggested that the mean quote amongst experts for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the professionals, 16.5% answered with "never ever" when asked the very same question however with a 90% self-confidence instead. [85] [86] Further current AGI development considerations can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 predictions made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might fairly be deemed an early (yet still incomplete) version of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of humans on the Torrance tests of creative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has actually currently been attained with frontier designs. They wrote that hesitation to this view originates from four main factors: a "healthy apprehension about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 likewise marked the development of big multimodal designs (big language models capable of processing or producing several techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time believing before they respond". According to Mira Murati, this capability to think before reacting represents a brand-new, extra paradigm. It enhances design outputs by spending more computing power when creating the response, whereas the model scaling paradigm enhances outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI staff member, Vahid Kazemi, declared in 2024 that the business had actually accomplished AGI, stating, "In my viewpoint, we have actually already achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than the majority of humans at a lot of jobs." He also resolved criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the scientific method of observing, hypothesizing, and verifying. These declarations have actually sparked dispute, as they rely on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show impressive flexibility, they may not fully meet this standard. Notably, Kazemi's remarks came quickly after OpenAI got rid of "AGI" from the regards to its partnership with Microsoft, triggering speculation about the company's strategic intentions. [95]
Timescales
Progress in synthetic intelligence has actually historically gone through durations of rapid progress separated by durations when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to create area for further development. [82] [98] [99] For example, the hardware readily available in the twentieth century was not adequate to execute deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that quotes of the time required before a really flexible AGI is built vary from ten years to over a century. As of 2007 [upgrade], the agreement in the AGI research study community seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have offered a large range of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a bias towards predicting that the onset of AGI would happen within 16-26 years for contemporary and historical forecasts alike. That paper has actually been slammed for how it classified opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the conventional technique utilized a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was concerned as the preliminary ground-breaker of the present deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly offered and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old child in first grade. An adult concerns about 100 typically. Similar tests were performed in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model efficient in performing numerous diverse jobs without particular training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to comply with their safety standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 various jobs. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, contending that it exhibited more basic intelligence than previous AI designs and demonstrated human-level performance in jobs spanning multiple domains, such as mathematics, coding, and law. This research sparked a debate on whether GPT-4 could be thought about an early, insufficient variation of synthetic general intelligence, stressing the requirement for additional exploration and examination of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this things could actually get smarter than individuals - a few people believed that, [...] But most individuals thought it was way off. And I thought it was method off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The progress in the last couple of years has been quite unbelievable", and that he sees no factor why it would slow down, anticipating AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test at least in addition to people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is thought about the most promising course to AGI, [116] [117] entire brain emulation can function as an alternative approach. With whole brain simulation, a brain model is developed by scanning and mapping a biological brain in information, and then copying and mimicing it on a computer system or another computational gadget. The simulation design need to be adequately devoted to the initial, so that it behaves in practically the exact same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study functions. It has been talked about in synthetic intelligence research study [103] as an approach to strong AI. Neuroimaging technologies that could provide the needed comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of sufficient quality will end up being available on a comparable timescale to the computing power required to imitate it.
Early approximates
For low-level brain simulation, a really effective cluster of computers or GPUs would be needed, provided the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a step used to rate existing supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the needed hardware would be available at some point between 2015 and 2025, if the rapid growth in computer system power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially detailed and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial nerve cell design presumed by Kurzweil and used in numerous existing artificial neural network applications is simple compared with biological nerve cells. A brain simulation would likely have to record the comprehensive cellular behaviour of biological nerve cells, presently understood just in broad summary. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not represent glial cells, which are understood to play a role in cognitive procedures. [125]
An essential criticism of the simulated brain method obtains from embodied cognition theory which asserts that human personification is an important element of human intelligence and is needed to ground significance. [126] [127] If this theory is correct, any completely practical brain design will require to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unknown whether this would suffice.
Philosophical point of view
"Strong AI" as specified in viewpoint
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between two hypotheses about artificial intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An artificial intelligence system can (only) act like it thinks and has a mind and consciousness.
The very first one he called "strong" because it makes a stronger declaration: it assumes something unique has taken place to the device that goes beyond those capabilities that we can check. The behaviour of a "weak AI" maker would be precisely similar to a "strong AI" machine, but the latter would also have subjective mindful experience. This use is also typical in academic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level artificial basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic thinkers such as Searle do not believe that is the case, and to most synthetic intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it in fact has mind - undoubtedly, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have numerous significances, and some aspects play significant roles in sci-fi and the ethics of artificial intelligence:
Sentience (or "phenomenal consciousness"): The ability to "feel" perceptions or emotions subjectively, as opposed to the capability to reason about perceptions. Some thinkers, such as David Chalmers, utilize the term "awareness" to refer specifically to extraordinary awareness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience occurs is referred to as the hard problem of awareness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be mindful. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had accomplished life, though this claim was extensively challenged by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a different person, specifically to be consciously aware of one's own thoughts. This is opposed to simply being the "topic of one's believed"-an os or debugger is able to be "familiar with itself" (that is, to represent itself in the same way it represents everything else)-however this is not what individuals typically indicate when they use the term "self-awareness". [g]
These characteristics have an ethical dimension. AI sentience would generate issues of well-being and legal protection, likewise to animals. [136] Other aspects of consciousness associated to cognitive abilities are likewise appropriate to the idea of AI rights. [137] Figuring out how to integrate sophisticated AI with existing legal and social frameworks is an emergent concern. [138]
Benefits
AGI might have a variety of applications. If oriented towards such objectives, AGI might help alleviate numerous problems on the planet such as hunger, poverty and health issue. [139]
AGI could improve productivity and effectiveness in the majority of tasks. For instance, in public health, AGI might speed up medical research, especially versus cancer. [140] It could look after the senior, [141] and equalize access to quick, high-quality medical diagnostics. It could use fun, inexpensive and personalized education. [141] The requirement to work to subsist could end up being obsolete if the wealth produced is properly redistributed. [141] [142] This also raises the concern of the place of people in a radically automated society.
AGI might also assist to make logical choices, and to prepare for and prevent catastrophes. It might likewise assist to profit of potentially disastrous innovations such as nanotechnology or environment engineering, while preventing the associated threats. [143] If an AGI's primary objective is to avoid existential disasters such as human termination (which might be hard if the Vulnerable World Hypothesis turns out to be real), [144] it could take procedures to considerably decrease the dangers [143] while decreasing the impact of these measures on our quality of life.
Risks
Existential threats
AGI may represent several kinds of existential danger, which are threats that threaten "the early extinction of Earth-originating intelligent life or the irreversible and drastic damage of its potential for desirable future advancement". [145] The risk of human extinction from AGI has actually been the subject of many disputes, but there is also the possibility that the development of AGI would result in a permanently problematic future. Notably, it might be utilized to spread out and preserve the set of values of whoever develops it. If humankind still has moral blind spots similar to slavery in the past, AGI might irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could help with mass surveillance and indoctrination, which could be used to develop a stable repressive worldwide totalitarian program. [147] [148] There is also a threat for the makers themselves. If makers that are sentient or otherwise deserving of moral consideration are mass developed in the future, participating in a civilizational path that indefinitely ignores their well-being and interests might be an existential catastrophe. [149] [150] Considering just how much AGI could improve mankind's future and help lower other existential dangers, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI positions an existential risk for people, which this risk needs more attention, is controversial but has actually been backed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, facing possible futures of enormous advantages and threats, the experts are definitely doing everything possible to guarantee the finest result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a couple of decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The prospective fate of mankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The comparison states that greater intelligence permitted mankind to dominate gorillas, which are now vulnerable in manner ins which they could not have expected. As a result, the gorilla has become an endangered types, not out of malice, but just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity which we must beware not to anthropomorphize them and analyze their intents as we would for human beings. He said that individuals will not be "wise sufficient to create super-intelligent machines, yet unbelievably foolish to the point of offering it moronic objectives without any safeguards". [155] On the other side, the concept of critical convergence recommends that almost whatever their objectives, smart agents will have factors to try to survive and get more power as intermediary steps to accomplishing these goals. Which this does not need having emotions. [156]
Many scholars who are concerned about existential danger advocate for more research study into solving the "control problem" to address the question: what kinds of safeguards, algorithms, or architectures can programmers implement to increase the possibility that their recursively-improving AI would continue to behave in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which might result in a race to the bottom of safety preventative measures in order to release items before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can posture existential threat also has detractors. Skeptics generally say that AGI is not likely in the short-term, or that issues about AGI distract from other issues associated with existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many individuals beyond the technology market, existing chatbots and LLMs are currently viewed as though they were AGI, leading to further misunderstanding and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some researchers think that the communication campaigns on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, issued a joint declaration asserting that "Mitigating the risk of extinction from AI need to be a global top priority along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of employees might see a minimum of 50% of their jobs impacted". [166] [167] They think about workplace workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, capability to make choices, to interface with other computer system tools, however also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of glamorous leisure if the machine-produced wealth is shared, or a lot of people can wind up badly bad if the machine-owners successfully lobby versus wealth redistribution. Up until now, the trend appears to be toward the second choice, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need governments to adopt a universal standard earnings. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI safety - Research area on making AI safe and advantageous AI alignment - AI conformance to the designated objective A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated machine learning - Process of automating the application of device learning BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play different video games Generative artificial intelligence - AI system efficient in producing content in response to prompts Human Brain Project - Scientific research task Intelligence amplification - Use of details innovation to augment human intelligence (IA). Machine ethics - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task knowing - Solving multiple device learning tasks at the exact same time. Neural scaling law - Statistical law in machine knowing. Outline of expert system - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of synthetic intelligence. Transfer learning - Machine learning technique. Loebner Prize - Annual AI competitors. Hardware for synthetic intelligence - Hardware specifically designed and enhanced for expert system. Weak artificial intelligence - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese room. ^ AI founder John McCarthy writes: "we can not yet characterize in general what sort of computational treatments we wish to call smart. " [26] (For a discussion of some definitions of intelligence utilized by synthetic intelligence researchers, see viewpoint of synthetic intelligence.). ^ The Lighthill report particularly slammed AI's "grand goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being determined to fund just "mission-oriented direct research, instead of fundamental undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be an excellent relief to the remainder of the employees in AI if the developers of brand-new general formalisms would express their hopes in a more guarded type than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a standard AI book: "The assertion that makers might potentially act wisely (or, maybe much better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that makers that do so are really thinking (as opposed to simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that synthetic general intelligence benefits all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is creating synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were identified as being active in 2020. ^ a b c "AI timelines: What do experts in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and alerts of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real risk is not AI itself however the way we release it. ^ "Impressed by artificial intelligence? Experts state AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential dangers to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of termination from AI must be a global top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of risk of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing makers that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on all of us to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based on the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of hard tests both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers avoided the term synthetic intelligence for fear of being seen as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in maker intelligence, synthetic basic intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A survey of expert opinion. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone in between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A designer developed an AI chatbot utilizing GPT-3 that assisted a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, wiki.rolandradio.net from playing games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might rival human intelligence in 'just a few years,' states CEO of Google's primary A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in existing research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, risks, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security threat' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over threat positioned but expert system can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI extinction threat". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect potential of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their tasks impacted by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal standard earnings due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the original on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can fix issues and attain goals on the planet as well as humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, recovered 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system easy enough to be reasonable will not be made complex enough to behave smartly, while any system made complex enough to behave wisely will be too made complex to comprehend." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from machines. For biological creatures, factor and function originate from acting on the planet and experiencing the repercussions. Expert systems - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who hope to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on governments driven by campaign financing contributions [from tech companies] to push back.' ... Marcus details the demands that citizens must make from their governments and drapia.org the tech companies. They consist of openness on how AI systems work; payment for people if their data [are] utilized to train LLMs (big language model) s and the right to grant this use; and the capability to hold tech business accountable for the damages they bring on by getting rid of Section 230, enforcing money penalites, and passing more stringent item liability laws ... Marcus likewise recommends ... that a new, AI-specific federal company, akin to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] a professional licensing program for engineers that would work in a similar method to medical licenses, malpractice suits, and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers also swore to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stymied people for decades, exposes the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has actually exposed that although NLP (natural-language processing) models are capable of amazing accomplishments, their capabilities are quite restricted by the quantity of context they receive. This [...] could trigger [problems] for researchers who want to utilize them to do things such as analyze ancient languages. Sometimes, there are couple of historical records on long-gone civilizations to work as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate fake videos identical from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply realistic videos produced using artificial intelligence that actually deceive people, then they barely exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their function better looks like that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning designs utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of synthetic basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to neglect inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that need genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed not able to reason rationally and tried to rely on its huge database of ... realities stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however unreliable. Rules-based systems can not handle scenarios their developers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have currently caused catastrophe. Advanced autopilot features in vehicles, although they perform well in some situations, have driven automobiles without cautioning into trucks, concrete barriers, and parked cars. In the incorrect circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is trying to control and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations however depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.