Artificial General Intelligence
Artificial basic intelligence (AGI) is a type of expert system (AI) that matches or goes beyond human cognitive capabilities across a wide variety of cognitive tasks. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly surpasses human cognitive capabilities. AGI is considered among the definitions of strong AI.
Creating AGI is a main objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research study and advancement jobs throughout 37 countries. [4]
The timeline for accomplishing AGI remains a topic of ongoing argument amongst scientists and experts. Since 2023, some argue that it might be possible in years or years; others keep it may take a century or longer; a minority believe it may never ever be achieved; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has actually revealed issues about the fast progress towards AGI, recommending it might be attained sooner than numerous expect. [7]
There is debate on the exact definition of AGI and relating to whether contemporary big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have specified that alleviating the danger of human termination posed by AGI ought to be a global top priority. [14] [15] Others discover the development of AGI to be too remote to provide such a danger. [16] [17]
Terminology
AGI is also called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]
Some academic sources reserve the term "strong AI" for computer system programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) is able to resolve one specific issue but lacks general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as humans. [a]
Related concepts include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is a lot more generally intelligent than humans, [23] while the notion of transformative AI connects to AI having a large influence on society, for example, similar to the farming or industrial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For example, a skilled AGI is specified as an AI that outshines 50% of competent grownups in a large range of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is likewise specified however with a threshold of 100%. They think about big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading propositions is the . However, there are other popular meanings, and some scientists disagree with the more popular methods. [b]
Intelligence qualities
Researchers usually hold that intelligence is required to do all of the following: [27]
factor, usage technique, fix puzzles, and make judgments under unpredictability
represent understanding, consisting of sound judgment knowledge
strategy
discover
- communicate in natural language
- if required, integrate these abilities in conclusion of any given goal
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) consider additional traits such as creativity (the capability to form unique mental images and principles) [28] and autonomy. [29]
Computer-based systems that display a number of these abilities exist (e.g. see computational imagination, automated reasoning, choice support system, robotic, evolutionary calculation, intelligent agent). There is dispute about whether contemporary AI systems have them to an appropriate degree.
Physical characteristics
Other capabilities are thought about desirable in intelligent systems, as they may affect intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the capability to act (e.g. move and control items, modification area to explore, etc).
This includes the ability to spot and react to danger. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and control items, change area to explore, etc) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) may already be or end up being AGI. Even from a less positive viewpoint on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in place of human senses. This interpretation lines up with the understanding that AGI has actually never ever been proscribed a specific physical personification and therefore does not require a capability for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to validate human-level AGI have actually been thought about, including: [33] [34]
The concept of the test is that the device needs to attempt and pretend to be a guy, by answering questions put to it, and it will only pass if the pretence is reasonably persuading. A significant part of a jury, who should not be expert about devices, need to be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would require to execute AGI, due to the fact that the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to require basic intelligence to solve in addition to human beings. Examples include computer vision, natural language understanding, and handling unanticipated situations while solving any real-world issue. [48] Even a particular task like translation requires a maker to read and write in both languages, follow the author's argument (reason), comprehend the context (understanding), and consistently reproduce the author's original intent (social intelligence). All of these problems require to be solved simultaneously in order to reach human-level maker performance.
However, a number of these jobs can now be carried out by modern-day big language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on lots of benchmarks for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The very first generation of AI researchers were encouraged that synthetic basic intelligence was possible which it would exist in simply a few decades. [51] AI leader Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could produce by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the task of making HAL 9000 as realistic as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the problem of developing 'artificial intelligence' will substantially be resolved". [54]
Several classical AI projects, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had actually grossly ignored the problem of the project. Funding firms ended up being doubtful of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "carry on a casual conversation". [58] In action to this and the success of expert systems, both market and federal government pumped money into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in twenty years, AI researchers who forecasted the impending achievement of AGI had been mistaken. By the 1990s, AI researchers had a reputation for making vain pledges. They became hesitant to make predictions at all [d] and avoided mention of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI accomplished commercial success and scholastic respectability by focusing on particular sub-problems where AI can produce proven outcomes and commercial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research study in this vein is heavily moneyed in both academic community and industry. Since 2018 [upgrade], development in this field was considered an emerging pattern, and a fully grown phase was expected to be reached in more than ten years. [64]
At the millenium, numerous traditional AI researchers [65] hoped that strong AI could be established by integrating programs that fix various sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up route to expert system will one day satisfy the standard top-down path more than half method, ready to offer the real-world competence and the commonsense knowledge that has actually been so frustratingly elusive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is truly only one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never ever be reached by this path (or vice versa) - nor is it clear why we must even attempt to reach such a level, because it appears arriving would just total up to uprooting our symbols from their intrinsic significances (consequently simply reducing ourselves to the practical equivalent of a programmable computer). [66]
Modern artificial basic intelligence research
The term "artificial basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the ability to please objectives in a wide variety of environments". [68] This type of AGI, defined by the capability to maximise a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a variety of visitor lecturers.
As of 2023 [update], a small number of computer system scientists are active in AGI research, and many contribute to a series of AGI conferences. However, significantly more researchers have an interest in open-ended learning, [76] [77] which is the idea of permitting AI to continuously learn and innovate like humans do.
Feasibility
As of 2023, the advancement and prospective accomplishment of AGI stays a subject of extreme debate within the AI neighborhood. While standard agreement held that AGI was a remote goal, recent developments have led some researchers and industry figures to claim that early forms of AGI might already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This prediction failed to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century because it would require "unforeseeable and fundamentally unpredictable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between contemporary computing and human-level artificial intelligence is as wide as the gulf in between current space flight and practical faster-than-light spaceflight. [80]
A further difficulty is the lack of clarity in specifying what intelligence requires. Does it require awareness? Must it show the capability to set objectives as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence require explicitly replicating the brain and its specific faculties? Does it require emotions? [81]
Most AI scientists think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, but that today level of progress is such that a date can not precisely be predicted. [84] AI specialists' views on the expediency of AGI wax and subside. Four polls performed in 2012 and 2013 recommended that the typical quote among experts for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% answered with "never ever" when asked the exact same question however with a 90% self-confidence instead. [85] [86] Further present AGI development considerations can be found above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards forecasting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They analyzed 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists released a comprehensive assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it might reasonably be viewed as an early (yet still incomplete) variation of an artificial general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of human beings on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of basic intelligence has actually already been attained with frontier designs. They composed that reluctance to this view comes from four primary factors: a "healthy hesitation about metrics for AGI", an "ideological dedication to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]
2023 also marked the emergence of large multimodal models (big language models capable of processing or creating multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of models that "invest more time believing before they respond". According to Mira Murati, this capability to think before reacting represents a new, extra paradigm. It enhances design outputs by spending more computing power when generating the answer, whereas the design scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the company had attained AGI, stating, "In my opinion, we have actually currently achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than many human beings at the majority of jobs." He also attended to criticisms that large language models (LLMs) simply follow predefined patterns, comparing their learning procedure to the clinical technique of observing, hypothesizing, and verifying. These statements have actually sparked debate, as they depend on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate remarkable versatility, they might not fully fulfill this standard. Notably, Kazemi's remarks came quickly after OpenAI got rid of "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's tactical intents. [95]
Timescales
Progress in synthetic intelligence has actually traditionally gone through durations of quick progress separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to develop area for more progress. [82] [98] [99] For example, the hardware available in the twentieth century was not sufficient to carry out deep learning, which requires large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that estimates of the time required before a really flexible AGI is built differ from 10 years to over a century. Since 2007 [update], the agreement in the AGI research neighborhood seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually given a wide variety of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards predicting that the start of AGI would happen within 16-26 years for contemporary and historic forecasts alike. That paper has been slammed for how it classified viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the conventional method utilized a weighted amount of ratings from different pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly readily available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old child in very first grade. A grownup comes to about 100 typically. Similar tests were brought out in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of carrying out numerous varied jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to comply with their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in carrying out more than 600 different tasks. [110]
In 2023, Microsoft Research published a study on an early variation of OpenAI's GPT-4, contending that it displayed more basic intelligence than previous AI designs and demonstrated human-level efficiency in jobs covering multiple domains, such as mathematics, coding, and law. This research study sparked a debate on whether GPT-4 could be thought about an early, incomplete version of artificial general intelligence, highlighting the need for more expedition and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton stated that: [112]
The idea that this stuff might in fact get smarter than individuals - a couple of people thought that, [...] But many people thought it was method off. And I believed it was method off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise said that "The development in the last few years has actually been pretty unbelievable", and that he sees no reason it would slow down, expecting AGI within a years or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would can passing any test a minimum of as well as people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI employee, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is thought about the most appealing path to AGI, [116] [117] whole brain emulation can act as an alternative approach. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in information, and then copying and replicating it on a computer system or another computational gadget. The simulation design need to be adequately faithful to the original, so that it acts in practically the exact same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been gone over in expert system research [103] as an approach to strong AI. Neuroimaging technologies that could deliver the necessary detailed understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of sufficient quality will end up being available on a comparable timescale to the computing power required to emulate it.
Early approximates
For low-level brain simulation, a very powerful cluster of computer systems or GPUs would be needed, offered the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by the adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a basic switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware needed to equal the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a step utilized to rate existing supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the required hardware would be available sometime between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially in-depth and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic nerve cell design presumed by Kurzweil and used in lots of current artificial neural network executions is simple compared to biological nerve cells. A brain simulation would likely have to record the detailed cellular behaviour of biological neurons, currently understood only in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers several orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not account for glial cells, which are understood to contribute in cognitive processes. [125]
A fundamental criticism of the simulated brain technique originates from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is essential to ground significance. [126] [127] If this theory is proper, any completely functional brain model will need to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unidentified whether this would be adequate.
Philosophical perspective
"Strong AI" as defined in approach
In 1980, theorist John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction in between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An artificial intelligence system can (just) imitate it believes and has a mind and awareness.
The first one he called "strong" due to the fact that it makes a stronger statement: it assumes something special has happened to the device that surpasses those abilities that we can evaluate. The behaviour of a "weak AI" machine would be precisely similar to a "strong AI" device, but the latter would likewise have subjective conscious experience. This usage is also typical in scholastic AI research and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level artificial general intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that awareness is necessary for human-level AGI. Academic theorists such as Searle do not believe that holds true, and to most expert system scientists the question is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it actually has mind - undoubtedly, there would be no way to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have different meanings, and some aspects play considerable roles in science fiction and the ethics of artificial intelligence:
Sentience (or "incredible consciousness"): The capability to "feel" perceptions or feelings subjectively, rather than the capability to factor about understandings. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer solely to extraordinary awareness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience occurs is known as the hard problem of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be conscious. If we are not mindful, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had attained sentience, though this claim was extensively contested by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a separate individual, specifically to be knowingly familiar with one's own thoughts. This is opposed to just being the "subject of one's believed"-an os or debugger is able to be "familiar with itself" (that is, to represent itself in the same way it represents whatever else)-but this is not what individuals normally suggest when they utilize the term "self-awareness". [g]
These qualities have a moral measurement. AI sentience would trigger issues of welfare and legal security, similarly to animals. [136] Other elements of consciousness associated to cognitive capabilities are likewise relevant to the principle of AI rights. [137] Finding out how to integrate sophisticated AI with existing legal and social structures is an emerging issue. [138]
Benefits
AGI could have a wide array of applications. If oriented towards such objectives, AGI might help alleviate various problems on the planet such as cravings, poverty and health issue. [139]
AGI might enhance performance and efficiency in a lot of jobs. For example, in public health, AGI could accelerate medical research, notably against cancer. [140] It could look after the senior, [141] and democratize access to quick, top quality medical diagnostics. It could provide fun, inexpensive and individualized education. [141] The requirement to work to subsist might end up being obsolete if the wealth produced is effectively redistributed. [141] [142] This likewise raises the concern of the place of humans in a radically automated society.
AGI could likewise assist to make rational decisions, and to prepare for and prevent catastrophes. It could also help to profit of possibly disastrous innovations such as nanotechnology or climate engineering, while preventing the associated dangers. [143] If an AGI's main goal is to prevent existential catastrophes such as human extinction (which might be hard if the Vulnerable World Hypothesis ends up being true), [144] it might take measures to significantly decrease the risks [143] while lessening the effect of these measures on our lifestyle.
Risks
Existential threats
AGI may represent several types of existential risk, which are threats that threaten "the premature extinction of Earth-originating intelligent life or the irreversible and extreme destruction of its potential for desirable future development". [145] The risk of human termination from AGI has been the topic of many debates, however there is likewise the possibility that the development of AGI would cause a permanently flawed future. Notably, it might be used to spread out and maintain the set of values of whoever establishes it. If humanity still has moral blind spots similar to slavery in the past, AGI may irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could facilitate mass surveillance and indoctrination, which could be used to produce a steady repressive worldwide totalitarian regime. [147] [148] There is likewise a threat for the devices themselves. If makers that are sentient or otherwise worthwhile of ethical factor to consider are mass produced in the future, engaging in a civilizational course that indefinitely overlooks their well-being and interests might be an existential disaster. [149] [150] Considering just how much AGI might enhance humanity's future and help in reducing other existential dangers, Toby Ord calls these existential threats "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI poses an existential threat for people, and that this danger requires more attention, is questionable but has actually been endorsed in 2023 by numerous public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, facing possible futures of incalculable benefits and dangers, the professionals are undoubtedly doing everything possible to make sure the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll show up in a few decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is happening with AI. [153]
The potential fate of mankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence enabled humanity to dominate gorillas, which are now vulnerable in manner ins which they might not have actually anticipated. As a result, the gorilla has actually become a threatened species, not out of malice, however merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind which we ought to beware not to anthropomorphize them and analyze their intents as we would for people. He stated that individuals will not be "clever sufficient to develop super-intelligent makers, yet ridiculously foolish to the point of providing it moronic objectives without any safeguards". [155] On the other side, the concept of crucial convergence suggests that practically whatever their goals, smart agents will have factors to try to make it through and obtain more power as intermediary actions to attaining these goals. Which this does not need having emotions. [156]
Many scholars who are worried about existential risk advocate for more research into fixing the "control issue" to answer the question: what types of safeguards, algorithms, or architectures can developers execute to maximise the likelihood that their recursively-improving AI would continue to behave in a friendly, instead of destructive, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might cause a race to the bottom of security preventative measures in order to launch products before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential threat likewise has detractors. Skeptics generally state that AGI is not likely in the short-term, or that issues about AGI distract from other concerns connected to present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many people outside of the technology industry, existing chatbots and LLMs are currently perceived as though they were AGI, resulting in more misunderstanding and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an illogical belief in an omnipotent God. [163] Some researchers believe that the communication projects on AI existential threat by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, released a joint declaration asserting that "Mitigating the risk of extinction from AI should be an international top priority alongside other societal-scale risks such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of workers may see a minimum of 50% of their tasks impacted". [166] [167] They consider office employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI might have a better autonomy, capability to make decisions, to interface with other computer system tools, but also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or many people can wind up badly poor if the machine-owners successfully lobby against wealth redistribution. Up until now, the pattern seems to be towards the second option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to embrace a universal fundamental income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI result AI safety - Research location on making AI safe and helpful AI alignment - AI conformance to the intended goal A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated maker knowing - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of expert system to play various games Generative expert system - AI system efficient in creating material in response to prompts Human Brain Project - Scientific research project Intelligence amplification - Use of details technology to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task knowing - Solving numerous device discovering tasks at the very same time. Neural scaling law - Statistical law in machine learning. Outline of synthetic intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of artificial intelligence. Transfer knowing - Artificial intelligence strategy. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specifically created and enhanced for artificial intelligence. Weak expert system - Form of synthetic intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the post Chinese space. ^ AI founder John McCarthy composes: "we can not yet define in general what sort of computational treatments we want to call intelligent. " [26] (For a discussion of some definitions of intelligence utilized by synthetic intelligence researchers, see approach of expert system.). ^ The Lighthill report particularly slammed AI's "grandiose objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being figured out to money only "mission-oriented direct research, rather than fundamental undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be an excellent relief to the rest of the workers in AI if the innovators of brand-new general formalisms would express their hopes in a more safeguarded type than has actually often been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI textbook: "The assertion that makers might potentially act intelligently (or, possibly much better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are actually thinking (rather than mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that synthetic basic intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is creating synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were identified as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton stops Google and cautions of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine threat is not AI itself however the way we deploy it. ^ "Impressed by artificial intelligence? Experts say AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could position existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of termination from AI need to be a global concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of threat of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete series of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everyone to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart traits is based on the subjects covered by significant AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of challenging examinations both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: asteroidsathome.net State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers prevented the term synthetic intelligence for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite development in machine intelligence, artificial general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of skilled opinion. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone in between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, but the consensus is that it is not AGI. ... If nothing else, GPT-3 tells us there is a middle ground between narrow and general AI. ^ Quach, Katyanna. "A developer constructed an AI chatbot using GPT-3 that assisted a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing video games to managing robots", TechCrunch, archived from the original on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might equal human intelligence in 'simply a few years,' says CEO of Google's primary A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in existing research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (estimated in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard postured however synthetic intelligence can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market impact potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees could see their jobs affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard earnings since 'in the future, setiathome.berkeley.edu physical work will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer programs that can resolve problems and attain objectives worldwide in addition to people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system easy adequate to be understandable will not be made complex enough to behave intelligently, while any system complicated enough to behave wisely will be too complicated to comprehend." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead basic silly. They work, but they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from makers. For biological creatures, reason and purpose come from acting in the world and experiencing the repercussions. Expert systems - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who hope to get rich from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on federal governments driven by campaign financing contributions [from tech companies] to press back.' ... Marcus details the needs that citizens ought to make of their federal governments and the tech companies. They include transparency on how AI systems work; settlement for people if their information [are] used to train LLMs (large language design) s and the right to grant this usage; and the ability to hold tech business accountable for the damages they trigger by eliminating Section 230, imposing money penalites, and passing stricter item liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal firm, similar to the FDA, the FCC, or morphomics.science the FTC, might supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] a professional licensing regime for engineers that would function in a comparable way to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers likewise promised to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled human beings for years, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has actually revealed that although NLP (natural-language processing) designs can amazing tasks, their abilities are very much restricted by the quantity of context they receive. This [...] could cause [problems] for scientists who hope to use them to do things such as analyze ancient languages. In many cases, there are few historic records on long-gone civilizations to serve as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to create fake videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply practical videos produced utilizing expert system that actually deceive people, then they barely exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, running in our media as counterfeited evidence. Their function much better looks like that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should avoid humanizing machine-learning designs used in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of synthetic basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to disregard inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed unable to reason rationally and tried to depend on its huge database of ... facts originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however undependable. Rules-based systems can not deal with situations their developers did not anticipate. Learning systems are limited by the information on which they were trained. AI failures have actually currently resulted in catastrophe. Advanced auto-pilot functions in cars and trucks, although they carry out well in some situations, have actually driven vehicles without cautioning into trucks, concrete barriers, and parked automobiles. In the incorrect circumstance, AI systems go from supersmart to superdumb in an immediate. When an opponent is trying to control and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new technologies but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.