Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities throughout a broad variety of cognitive tasks. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly exceeds human cognitive capabilities. AGI is considered one of the meanings of strong AI.
Creating AGI is a main objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research and development projects throughout 37 nations. [4]
The timeline for achieving AGI stays a topic of ongoing dispute amongst researchers and . Since 2023, some argue that it may be possible in years or decades; others keep it might take a century or longer; a minority believe it may never be attained; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed issues about the fast development towards AGI, suggesting it could be attained sooner than lots of expect. [7]
There is argument on the precise meaning of AGI and regarding whether contemporary big language designs (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have specified that alleviating the risk of human termination postured by AGI should be a worldwide priority. [14] [15] Others discover the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some academic sources schedule the term "strong AI" for computer programs that experience sentience or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to solve one particular problem but lacks general cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as human beings. [a]
Related concepts consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is much more generally intelligent than humans, [23] while the concept of transformative AI relates to AI having a large effect on society, for example, similar to the agricultural or commercial transformation. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify 5 levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For example, a competent AGI is defined as an AI that outshines 50% of proficient adults in a large range of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified however with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular techniques. [b]
Intelligence qualities
Researchers usually hold that intelligence is needed to do all of the following: [27]
reason, use strategy, resolve puzzles, and make judgments under unpredictability
represent knowledge, including good sense understanding
strategy
discover
- interact in natural language
- if required, integrate these skills in completion of any provided objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider extra characteristics such as imagination (the ability to form novel psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that exhibit a lot of these capabilities exist (e.g. see computational creativity, automated reasoning, decision support system, robot, evolutionary calculation, smart representative). There is debate about whether modern-day AI systems possess them to an appropriate degree.
Physical qualities
Other abilities are thought about desirable in intelligent systems, as they may affect intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. relocation and manipulate objects, change place to check out, and so on).
This includes the ability to spot and react to risk. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and control objects, modification area to explore, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language models (LLMs) may already be or become AGI. Even from a less optimistic point of view on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and therefore does not demand a capacity for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to validate human-level AGI have actually been considered, including: [33] [34]
The concept of the test is that the device has to try and pretend to be a male, by answering questions put to it, and it will just pass if the pretence is fairly convincing. A substantial part of a jury, who need to not be expert about devices, need to be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to implement AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of issues that have actually been conjectured to require general intelligence to fix along with human beings. Examples consist of computer system vision, natural language understanding, and dealing with unexpected circumstances while fixing any real-world problem. [48] Even a particular job like translation requires a machine to check out and write in both languages, follow the author's argument (reason), comprehend the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these problems require to be fixed at the same time in order to reach human-level device efficiency.
However, a number of these tasks can now be performed by modern-day big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on numerous standards for checking out comprehension and visual thinking. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were persuaded that synthetic general intelligence was possible and that it would exist in simply a couple of decades. [51] AI pioneer Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could produce by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the task of making HAL 9000 as reasonable as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the issue of developing 'expert system' will significantly be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became obvious that scientists had actually grossly underestimated the problem of the job. Funding firms ended up being hesitant of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a table talk". [58] In reaction to this and the success of professional systems, both market and government pumped money into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in twenty years, AI scientists who anticipated the impending achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a credibility for making vain pledges. They ended up being reluctant to make forecasts at all [d] and avoided mention of "human level" synthetic intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved industrial success and academic respectability by concentrating on particular sub-problems where AI can produce proven results and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research in this vein is heavily funded in both academia and market. As of 2018 [upgrade], advancement in this field was thought about an emerging trend, and a mature stage was anticipated to be reached in more than ten years. [64]
At the turn of the century, numerous mainstream AI researchers [65] hoped that strong AI might be developed by combining programs that fix numerous sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up path to artificial intelligence will one day fulfill the traditional top-down path over half way, ready to supply the real-world competence and the commonsense understanding that has been so frustratingly elusive in reasoning programs. Fully intelligent machines will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is actually just one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this path (or vice versa) - nor is it clear why we should even try to reach such a level, because it looks as if getting there would simply total up to uprooting our signs from their intrinsic significances (consequently merely minimizing ourselves to the functional equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research study
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to please objectives in a large range of environments". [68] This type of AGI, defined by the capability to increase a mathematical definition of intelligence instead of display human-like behaviour, [69] was also called universal artificial intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor speakers.
Since 2023 [upgrade], a little number of computer system scientists are active in AGI research, and many add to a series of AGI conferences. However, significantly more researchers are interested in open-ended knowing, [76] [77] which is the concept of enabling AI to constantly find out and innovate like humans do.
Feasibility
Since 2023, the development and possible accomplishment of AGI stays a subject of extreme dispute within the AI neighborhood. While conventional consensus held that AGI was a distant objective, recent improvements have led some scientists and industry figures to declare that early forms of AGI may currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century because it would require "unforeseeable and fundamentally unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level expert system is as broad as the gulf between present space flight and useful faster-than-light spaceflight. [80]
A more challenge is the lack of clearness in defining what intelligence involves. Does it need awareness? Must it show the ability to set goals in addition to pursue them? Is it purely a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding required? Does intelligence need clearly reproducing the brain and its specific faculties? Does it need feelings? [81]
Most AI scientists think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, but that today level of development is such that a date can not precisely be forecasted. [84] AI experts' views on the expediency of AGI wax and wane. Four surveys conducted in 2012 and 2013 suggested that the average estimate amongst professionals for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% addressed with "never" when asked the very same question but with a 90% self-confidence rather. [85] [86] Further current AGI progress considerations can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it might reasonably be viewed as an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of human beings on the Torrance tests of imaginative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has actually currently been achieved with frontier designs. They composed that unwillingness to this view originates from four primary factors: a "healthy hesitation about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]
2023 also marked the development of large multimodal models (large language models capable of processing or generating several techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of designs that "invest more time thinking before they react". According to Mira Murati, this ability to think before reacting represents a new, additional paradigm. It enhances design outputs by investing more computing power when producing the response, whereas the model scaling paradigm improves outputs by increasing the design size, training data and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, claimed in 2024 that the business had actually accomplished AGI, mentioning, "In my opinion, we have actually currently accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than most people at most jobs." He also attended to criticisms that big language models (LLMs) merely follow predefined patterns, comparing their learning process to the scientific method of observing, hypothesizing, and confirming. These statements have actually triggered dispute, as they count on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate impressive versatility, they may not totally meet this standard. Notably, Kazemi's remarks came soon after OpenAI got rid of "AGI" from the terms of its collaboration with Microsoft, triggering speculation about the business's strategic objectives. [95]
Timescales
Progress in expert system has actually traditionally gone through periods of rapid development separated by periods when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to produce area for further progress. [82] [98] [99] For example, the computer system hardware readily available in the twentieth century was not sufficient to execute deep learning, which needs big numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that estimates of the time needed before a genuinely flexible AGI is constructed vary from ten years to over a century. As of 2007 [update], the consensus in the AGI research neighborhood seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have provided a large range of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the beginning of AGI would occur within 16-26 years for modern and historical predictions alike. That paper has been criticized for how it classified opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the conventional approach used a weighted sum of ratings from various pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the existing deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly offered and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old child in very first grade. An adult pertains to about 100 usually. Similar tests were carried out in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design capable of performing many varied jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to abide by their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 various jobs. [110]
In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, competing that it displayed more basic intelligence than previous AI designs and showed human-level efficiency in jobs spanning numerous domains, such as mathematics, coding, and law. This research study triggered a debate on whether GPT-4 could be considered an early, insufficient version of artificial general intelligence, highlighting the need for further expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The concept that this things might in fact get smarter than people - a couple of people thought that, [...] But many people thought it was method off. And I believed it was method off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise said that "The progress in the last few years has actually been pretty amazing", which he sees no reason it would decrease, expecting AGI within a decade and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would can passing any test a minimum of in addition to people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is considered the most promising path to AGI, [116] [117] entire brain emulation can act as an alternative approach. With entire brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and after that copying and replicating it on a computer system or another computational gadget. The simulation design need to be sufficiently devoted to the original, so that it acts in almost the same way as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has actually been discussed in expert system research study [103] as a method to strong AI. Neuroimaging innovations that could provide the essential comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of enough quality will appear on a similar timescale to the computing power required to emulate it.
Early estimates
For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be required, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon an easy switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various price quotes for the hardware required to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a step utilized to rate existing supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He used this figure to anticipate the needed hardware would be readily available at some point between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially in-depth and openly available atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic neuron model assumed by Kurzweil and used in many existing artificial neural network executions is simple compared to biological nerve cells. A brain simulation would likely need to catch the comprehensive cellular behaviour of biological neurons, presently understood just in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's estimate. In addition, the quotes do not account for glial cells, which are known to play a role in cognitive procedures. [125]
An essential criticism of the simulated brain technique stems from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is essential to ground significance. [126] [127] If this theory is right, any completely practical brain design will need to encompass more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unknown whether this would suffice.
Philosophical perspective
"Strong AI" as defined in viewpoint
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between 2 hypotheses about artificial intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (just) imitate it thinks and has a mind and awareness.
The very first one he called "strong" due to the fact that it makes a stronger declaration: it assumes something unique has happened to the maker that goes beyond those capabilities that we can evaluate. The behaviour of a "weak AI" device would be specifically similar to a "strong AI" maker, however the latter would also have subjective mindful experience. This usage is also common in scholastic AI research study and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level artificial basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is assumed that consciousness is needed for human-level AGI. Academic theorists such as Searle do not believe that holds true, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it actually has mind - indeed, there would be no other way to tell. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have numerous meanings, and some elements play significant functions in sci-fi and the principles of expert system:
Sentience (or "sensational consciousness"): The ability to "feel" understandings or feelings subjectively, instead of the capability to factor about understandings. Some thinkers, such as David Chalmers, use the term "awareness" to refer exclusively to sensational awareness, which is approximately comparable to sentience. [132] Determining why and how subjective experience arises is known as the difficult issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be mindful. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had attained sentience, though this claim was commonly contested by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a different person, especially to be purposely knowledgeable about one's own thoughts. This is opposed to just being the "topic of one's thought"-an os or debugger has the ability to be "familiar with itself" (that is, to represent itself in the very same method it represents whatever else)-however this is not what people typically imply when they use the term "self-awareness". [g]
These traits have a moral measurement. AI sentience would trigger concerns of well-being and legal defense, likewise to animals. [136] Other elements of consciousness related to cognitive capabilities are also relevant to the idea of AI rights. [137] Figuring out how to incorporate innovative AI with existing legal and social structures is an emergent issue. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such goals, AGI could assist reduce various issues on the planet such as hunger, hardship and health issue. [139]
AGI might improve performance and efficiency in the majority of tasks. For example, in public health, AGI might speed up medical research study, significantly versus cancer. [140] It could look after the senior, [141] and democratize access to fast, top quality medical diagnostics. It could provide enjoyable, cheap and customized education. [141] The requirement to work to subsist might become outdated if the wealth produced is appropriately redistributed. [141] [142] This likewise raises the question of the location of humans in a drastically automated society.
AGI might likewise help to make reasonable choices, and to anticipate and avoid disasters. It might also help to reap the advantages of possibly disastrous innovations such as nanotechnology or environment engineering, while preventing the associated risks. [143] If an AGI's primary goal is to avoid existential catastrophes such as human extinction (which might be challenging if the Vulnerable World Hypothesis turns out to be true), [144] it might take measures to dramatically reduce the risks [143] while lessening the effect of these measures on our quality of life.
Risks
Existential threats
AGI might represent numerous types of existential danger, which are risks that threaten "the early extinction of Earth-originating smart life or the long-term and drastic damage of its capacity for preferable future advancement". [145] The threat of human extinction from AGI has been the topic of numerous debates, but there is likewise the possibility that the advancement of AGI would lead to a completely flawed future. Notably, it could be utilized to spread out and protect the set of values of whoever establishes it. If humanity still has moral blind areas similar to slavery in the past, AGI may irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI might help with mass security and brainwashing, which could be used to produce a steady repressive around the world totalitarian program. [147] [148] There is likewise a risk for the machines themselves. If makers that are sentient or otherwise worthy of ethical factor to consider are mass produced in the future, participating in a civilizational path that forever ignores their well-being and interests could be an existential catastrophe. [149] [150] Considering just how much AGI might enhance humankind's future and aid minimize other existential risks, Toby Ord calls these existential threats "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI positions an existential risk for people, and that this danger needs more attention, is questionable however has been backed in 2023 by numerous public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, facing possible futures of incalculable benefits and dangers, the experts are undoubtedly doing whatever possible to ensure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll arrive in a few years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]
The possible fate of mankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence permitted mankind to control gorillas, which are now susceptible in manner ins which they might not have actually expected. As an outcome, the gorilla has actually become a threatened species, not out of malice, however just as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control mankind and that we need to beware not to anthropomorphize them and analyze their intents as we would for human beings. He said that individuals won't be "clever sufficient to design super-intelligent devices, yet extremely silly to the point of giving it moronic goals without any safeguards". [155] On the other side, the idea of critical convergence suggests that practically whatever their objectives, smart representatives will have factors to attempt to survive and obtain more power as intermediary steps to accomplishing these goals. And that this does not require having feelings. [156]
Many scholars who are worried about existential threat advocate for more research into resolving the "control problem" to answer the question: what kinds of safeguards, algorithms, or architectures can developers execute to increase the possibility that their recursively-improving AI would continue to behave in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which could cause a race to the bottom of safety precautions in order to release items before rivals), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can position existential threat likewise has detractors. Skeptics normally say that AGI is not likely in the short-term, or that issues about AGI distract from other issues connected to current AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for many individuals beyond the technology market, existing chatbots and LLMs are already viewed as though they were AGI, causing more misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an unreasonable belief in a supreme God. [163] Some scientists believe that the communication campaigns on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and researchers, issued a joint statement asserting that "Mitigating the risk of termination from AI need to be a worldwide priority along with other societal-scale risks such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of workers may see a minimum of 50% of their tasks affected". [166] [167] They think about workplace employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make decisions, to user interface with other computer system tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be rearranged: [142]
Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or many people can wind up badly bad if the machine-owners effectively lobby against wealth redistribution. Up until now, the trend seems to be toward the second alternative, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to embrace a universal standard earnings. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI security - Research area on making AI safe and helpful AI positioning - AI conformance to the designated objective A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of maker learning BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of synthetic intelligence to play various games Generative expert system - AI system capable of generating material in reaction to prompts Human Brain Project - Scientific research study task Intelligence amplification - Use of details technology to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made machines. Moravec's paradox. Multi-task learning - Solving several maker discovering tasks at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of synthetic intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or form of artificial intelligence. Transfer knowing - Machine knowing method. Loebner Prize - Annual AI competition. Hardware for artificial intelligence - Hardware specifically developed and optimized for synthetic intelligence. Weak expert system - Form of synthetic intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the post Chinese room. ^ AI creator John McCarthy composes: "we can not yet define in general what kinds of computational treatments we wish to call smart. " [26] (For a discussion of some definitions of intelligence utilized by expert system researchers, see approach of artificial intelligence.). ^ The Lighthill report specifically criticized AI's "grandiose goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA became identified to money just "mission-oriented direct research study, rather than standard undirected research". [56] [57] ^ As AI creator John McCarthy writes "it would be a great relief to the remainder of the workers in AI if the inventors of new general formalisms would express their hopes in a more safeguarded type than has actually sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As specified in a basic AI book: "The assertion that machines might potentially act wisely (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are in fact believing (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that synthetic general intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were identified as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and alerts of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real threat is not AI itself but the method we release it. ^ "Impressed by artificial intelligence? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential threats to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that mankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI must be a global priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating machines that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everyone to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based upon the topics covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for setiathome.berkeley.edu 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of difficult exams both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers avoided the term synthetic intelligence for fear of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite progress in maker intelligence, synthetic general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in synthetic intelligence: A study of skilled opinion. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and archmageriseswiki.com deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 tells us there is a happy medium in between narrow and basic AI. ^ Quach, Katyanna. "A developer developed an AI chatbot using GPT-3 that assisted a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 jobs, from playing games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'just a few years,' says CEO of Google's main A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide range of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, risks, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security risk' to Australia, Senate inquiry says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The remarkable Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk posed however expert system can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says big tech is lying about AI extinction risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect capacity of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their jobs impacted by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal standard income due to the fact that 'in the future, manual labor will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the original on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer programs that can fix issues and attain objectives worldwide along with people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York: Oxford University Press, archived from the original on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system easy enough to be reasonable will not be complicated enough to act smartly, while any system made complex enough to act wisely will be too complicated to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy stupid. They work, but they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from devices. For biological animals, reason and purpose come from acting on the planet and kenpoguy.com experiencing the effects. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who intend to get abundant from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't depend on federal governments driven by project finance contributions [from tech business] to press back.' ... Marcus information the demands that people should make from their federal governments and the tech business. They include openness on how AI systems work; settlement for people if their data [are] utilized to train LLMs (big language model) s and the right to consent to this usage; and the ability to hold tech business accountable for the harms they trigger by eliminating Section 230, imposing cash penalites, and passing more stringent product liability laws ... Marcus also recommends ... that a new, AI-specific federal agency, akin to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] a professional licensing program for engineers that would function in a similar method to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers likewise vowed to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped human beings for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has revealed that although NLP (natural-language processing) models can unbelievable accomplishments, their capabilities are quite limited by the amount of context they get. This [...] could cause [troubles] for researchers who hope to utilize them to do things such as evaluate ancient languages. Sometimes, there are few historical records on long-gone civilizations to work as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce phony videos indistinguishable from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply sensible videos produced using artificial intelligence that in fact trick individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, running in our media as counterfeited proof. Their role better looks like that of animations, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning models used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to ignore contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to factor logically and tried to rely on its large database of ... realities derived from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective but undependable. Rules-based systems can not handle circumstances their developers did not anticipate. Learning systems are restricted by the data on which they were trained. AI failures have actually currently resulted in tragedy. Advanced auto-pilot functions in automobiles, although they carry out well in some situations, have actually driven vehicles without warning into trucks, concrete barriers, and parked automobiles. In the wrong scenario, AI systems go from supersmart to superdumb in an immediate. When an opponent is attempting to manipulate and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new innovations however depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.